Changes in the longitudinal structure of the low-latitude ionosphere during the July 2004 sequence of geomagnetic storms

نویسندگان

  • N. M. Pedatella
  • J. M. Forbes
  • J. Lei
  • J. P. Thayer
  • K. M. Larson
چکیده

[1] In this brief report, the interplay between meteorological and geomagnetic activity influences on the low-latitude ionosphere is studied. Specifically, the disruption of the dominant wave-4 longitudinal structure of the equatorial ionization anomaly (EIA) by geomagnetic storms is investigated in connection with a sequence of three coronal mass ejections in July 2004. Observations of in situ electron density from the Challenging Minisatellite Payload (CHAMP) satellite are used to investigate changes in the longitudinal structure of the EIA during the different phases of the geomagnetic storms. The observed electron densities at 1200 local time during the initial-main phases of the storms does not indicate significant longitudinal structure of the low-latitude ionosphere. A wave-4 structure of the EIA begins to reappear during the storm recovery phases although it is slightly weaker compared to undisturbed conditions. Although the upward propagating atmospheric tides responsible for generating the wave-4 structure of the EIA are not influenced by the geomagnetic storms, changes in the electric fields, neutral winds, and neutral composition due to the geomagnetic storms serve to disrupt the longitudinal structure of the EIA. The results further indicate that the sampling longitude needs to be accounted for when using satellite observations at a fixed local time for geomagnetic storm studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of St Patrick’s Day Intervals Geomagnetic Storms on the Accuracy of GNSS Positioning and Total Electron Content over Nigeria

Total electron content (TEC) and GNSS positioning error over two Nigeria GNSS stations (CLBR: Latitude; 4.9503°E, Longitude; 8.3514°N, FUTY: Latitude; 9.3497°E, Longitude; 12.4978°N) were studied during the geomagnetic storms of March 17, 2015 minimum Dst (Disturbed storm time) -223nT and that of March 17, 2013 minimum Dst of -132nT (the St. Patrick’s...

متن کامل

November 2003 event: effects on the Earth’s ionosphere observed from ground-based ionosonde and GPS data

Intense late-cycle solar activity during October and November 2003 produced two strong geomagnetic storms: 28 October–5 November 2003 (October) and 19– 23 November 2003 (November); both reached intense geomagnetic activity levels, Kp=9, and Kp=8+, respectively. The October 2003 geomagnetic storm was stronger, but the effects on the Earth’s ionosphere in the mid-latitude European sector were mor...

متن کامل

Seasonal variations of storm-time TEC at European middle latitudes

Global Navigation Satellite System (GNSS) measurements of the Total Electron Content (TEC) from local (Dourbes, 50.1oN, 04.6oE) and European IGS (International GNSS Service) stations were used to obtain the TEC changes during the geomagnetic storms of the latest solar activity cycle. A common epoch analysis, with respect to geomagnetic storm intensity, season, and latitude, was performed on dat...

متن کامل

Variability of F2-layer peak characteristics at low latitude in Argentina for high and low solar activity and comparison with the IRI-2016 model

This work presents the study of the variability of foF2 and hmF2 at a low latitude station in South America (Tucumán, 26.9°S, 294.6°E; magnetic latitude 15.5°S, Argentina). Ground based ionosonde measurements obtained during different seasonal and solar activity conditions (a year of low solar activity, 2009 and one of high solar activity, 2016) are considered in order to compare the ionospheri...

متن کامل

Investigation of the effects of geomagnetic storms on ionospheric irregularities using the combination of ground-based GNSS and SWARM satellites

Geomagnetic storms are one of the main causes of ionospheric perturbations in different sizes, depending on their intensity, which could disturb radio signals passing through this medium. On September 6-12, 2017, the sudden storm commencement (SSC) was the most massive geomagnetic storm of the year due to the X9 solar flare caused by a coronal mass ejection (CME). IMF-Bz and Dst values increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008